Reconstruction of 3d objects with axial symmetry from laser triangulation

Authors

  • Dagoberto Mayorca Torres Universidad Mariana
  • Anghelo Marino López Universidad Mariana

Keywords:

3D Reconstruction, laser triangulation, optical metrology, axial simmetry

Abstract

This article describes the 3D reconstruction of an object that possesses axial symmetry from the laser triangulation method; the system allows obtaining the shape and dimensions of an object by directional light projection in structured form and controlled rotation of the object. The system consists of a lighting stage through the projection of a laser line, a system of acquisition through the use of a webcam and the design of a platform that is responsible for the rotation controlled by a motor coupled to a box speed reducer. The software application allows synchronizing the system through the USB port, to finally perform the image processing and the display of the results obtained in a graphical interface. Experimental design considerations and their limitations as minimum resolution, accuracy of measures are detailed in this article.

 

 

Author Biographies

Dagoberto Mayorca Torres, Universidad Mariana

Especialista en gerencia de proyectos Ingeniero Físico (Universidad del Cauca). Docente Facultad de Ingeniería (Universidad Mariana), integrante del Grupo de Investigación GRIM de la Universidad Mariana

Anghelo Marino López, Universidad Mariana

Candidato a Magister en Sistemas Automáticos de Producción (Universidad Tecnologica de Pereira). Ingeniero Electronico (Universidad de Nariño). Director de Ingeniería mecatrónica, Integrante del Grupo de Investigación GRIM de la Universidad Mariana 

References

Ahmed, M. & Farag, A. (2005). Non metric calibration of camera lens distortion: differential methods and robust estimation. IEEE Transactions on Image Processing, 14(8), 1215-1230. https://doi.org/10.1109/TIP.2005.846025

Argüello-Sarmiento, G., Barrero-Pérez, J. y Meneses-Fonseca, J. (2012). Reconstrucción tridimensional de objetos con simetría axial a partir del método de triangulación láser con múltiples sistemas de observación. Revista UIS Ingenierías 11(2).

Castañeda, R. (1994). Interferometría de Speckles. Revista de la Facultad de Ciencias, 4(2),Universidad Nacional de Colombia, Sede Medellín.

Cock, J. (2000). El método de la triangulación aplicado en un escaner laser, para objetos tridimensionales. Revista Universidad Eafit,25-31.

Forest, J. (2004). New methods for triangulation-based shape acquisition using laser scanners (Tesis doctoral). Universitat de Girona.

Geng, J. (2011). Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 3(2), 128-160. https://doi.org/10.1364/AOP.3.000128

Kus, A. (2009). Implementation of 3D Optical Scanning Technology for Automotive applications. Recuper-ado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345859/ https://doi.org/10.3390/s90301967

Moccozet, L., Dellas, F., Magnenat-Thalmann, N., Biasotti, S., Mortara, M., Falcidieno, B. ... Veltkamp, R. (s.f.). Animatable Human Body Model Reconstruction from 3D Scan Data using Templates. Recuperado de http://www.patrickmin.nl/pubs/moccozet04.pdf

Lam, L., Lee, S. & Suen, C. (1992). Thinning Methodologies - A Comprensive Survey. IEEE Transactions on Pattern Analysis and Machine Inteligence, 14(9), 869-885. https://doi.org/10.1109/34.161346

Ledezma, Ó., Patiño, A. & Patiño, J. (2007). 3D Surface Scanner for Fuzzy Objects. Revista Colombiana de Tecnologías de Avanzada 2(10), 131-134.Real Academia Española. (RAE). (2011).

Real Diccionario de la Academia de la Lengua Española, RAE, vigésima segunda edición virtual. Recuperado de http://www.rae.es/rae.html

Santolaria, J., Aguilar, J., Lope, M., Yagüe, J., Royo, J. y Puertas, J. (s.f.). Digitalización rápida de modelos: métodos, instrumentos, estrategias de digitalización y análisis de la precisión obtenida mediante un sensor láser por triangulación. Recuperado de http://www.egrafica.unizar.es/ingegraf/pdf/comunicacion17058.pdf

Schnee, J. & Futterlieb, J. (2011). Laser Line Extraction with Dynamic Line Models. Recuperado de https://link.springer.com/chapter/10.1007/978-3-642-23672-3_16 https://doi.org/10.1007/978-3-642-23672-3_16

Tsai, R. (1987). A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-self TV cameras and lenses. IEEE Journal of Robotics and Automation, 3(4), 323-344. https://doi.org/10.1109/JRA.1987.1087109

Weng, J., Huang, T. & Ahuja, N. (1989). Motion and structure from two perspective views: algorithms, error analysis and error estimation. IEEETransactions on Pattern Analysis and Machine Intelligence 11(5). https://doi.org/10.1109/34.24779

Zhang, T. y Suen, C. (1984). A Fast Parallel Algorithm for Thinning Digital Patterns. Communications of the ACM 27(3), 236-239. https://doi.org/10.1145/357994.358023

Zhang, Z. (1998). A flexible new technique for camera calibration. Recuperado de citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220

How to Cite

Mayorca Torres, D., & Marino López, A. (2017). Reconstruction of 3d objects with axial symmetry from laser triangulation. Revista UNIMAR, 35(2), 239–253. Retrieved from https://revistas.umariana.edu.co/index.php/unimar/article/view/1537

Downloads

Download data is not yet available.

Published

2017-06-07

Issue

Section

Artículos resultado de investigación

Altmetric

QR Code
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views