METODOLOGÍA PARA SIMULAR LA DISPERSIÓN DE CENIZAS VOLCÁNICAS EN LA ATMÓSFERA

Authors

  • Julio Alexander Argoti Álvarez Universidad Mariana

Keywords:

Volcanic aerosols, volcanic ash, Weather Research and Forecasting, Fall3d, volcanic plume

Abstract

El presente documento corresponde a una revisión bibliográfica sobre algunas experiencias de investigadores, que han desarrollado modelos que permiten hacer simulaciones de tipo numérico y que se realizan mediante grandes y complejos procesos computacionales. Se inicia el documento con la explicación sobre los conceptos de modelación y simulación, y vulcanismo explosivo, se explica las consecuencias que genera la ceniza en la vida del hombre. Posteriormente, se indican los modelos atemáticos y computacionales que se utilizan para la modelación y simulación de las cenizas y los aerosoles volcánicos en la atmósfera; después, a través de ejemplos, se caracteriza la dinámica meteorológica y de cenizas en la atmósfera. Por último, se resalta la importancia de la validación de las simulaciones y modelaciones, con elementos reales de los fenómenos de estudio; finalmente, se concluye cómo postular esta metodologí­a de simulación de cenizas volcánicas, como una adecuada herramienta para procesos de pronósticos de la dinámica de la dispersión de cenizas volcánicas y de esta manera, proponer un instrumento útil para la toma de decisiones en el caso de erupciones volcánicas.

Author Biography

Julio Alexander Argoti Álvarez, Universidad Mariana

Especialista en Orientación Educativa y Desarrollo Humano, Universidad de Nariño, San Juan de Pasto, Colombia; Ingeniero de Sistemas y Licenciado en Matemáticas, San Juan de Pasto, Colombia.

References

Armienti, P., Macedonio, G., Pareschi, M. (1988) A numerical mo-del for simulation of tephra transport and deposition: applications to May 18, 1980, Mount St Helens Eruption, J. Geophys, Res. 93(B6): 6463-6476, p. 12 - 30

Ayris, P. & Delmelle, P. (2011) Volcanic and atmospheric controls on ash iron solubility: A review. Journal of Physics and Chemistry of the Ear, (August 2008). Elsevier Ltd. doi:10.1016/j.pce.2011.04.013

Baxter, P., Neri, A. & Blong, R. (2008) Evaluating explosive eruption risk at European volcanoes. Journal of Volcano-logy and Geothermal Research, 178(3), v-ix. doi:10.1016/j.jvolgeores.2008.11.012

Baxter, P., Aspinall, W., Neri, A., Zuccaro, G., Spence, R., Cioni, R., & Woo, G. (2008) Emergency planning and mitigation at Vesuvius: A new evidence-based approach. Journal of Volca-nology and Geothermal Research, 178(3), 454-473. Elsevier B.V. doi:10.1016/j.jvolgeores.2008.08.015

Blum, W. & Borromeo Ferri, R. (2009) Mathematical Modelling: Can It Be Taught And Learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.

Bonasia, R., Costa, A., Folch, A., Macedonio, G., & Capra, L. (2012) Numerical simulation of tephra transport and deposition of the 1982, El Chichón eruption and implica-tions for hazard assessment. Journal of Volcanology and Geothermal Research, 231-232, 39-49. Elsevier B.V. doi:10.1016/j.jvolgeores.2012.04.006

Bonasia, R., Macedonio, G., Costa, A., Mele, D. & Sulpizio, R. (2010) Numerical inversion and analysis of tephra fallout deposits from the 472 AD sub-Plinian eruption at Vesuvius (Italy) through a new bestfit procedure. Journal of Volcano-logy and Geothermal Research, 189(3-4), 238-246. Elsevier B.V. doi:10.1016/j.jvolgeores.2009.11.009

Boff, L. (2008) La opción - Tierra, La solución para la tierra no cae del cielo. Santander, Brasil: Editorial Sal Terrae, Impreso en España, ISBN:978-84-293-1762-6, Dep. Legal: BI-672-08, Impresión y encuadernación Grafo, S.A. - Basuari, Vizcaya. p 26 - 27.

Brown, R., Bonadonna, C. & Durant, A. (2011) A review of volcanic ash aggregation. Physics and Chemistry of the Earth, Parts A/B/C, 14. Elsevier Ltd. doi:10.1016/j.pce.2011.11.001

Carazzo, G. & Jellinek, A. (2012) A new view of the dyna-mics, stability and longevity of volcanic clouds. Earth and Planetary Science Letters, 39-51. Elsevier B.V. doi:10.1016/j.epsl.2012.01.025

Carey, S. (1996) Modeling of thepra fallout from explosive eruptions, Monitoring and Mitigation of Volcano Hazards, Springer-Verlag Berlin Heidelberg, 440-470.

Carslaw, H. & Jeager, J.C. (2000) Conduction of Heat in solids, Oxford University, Press, London, 43–45.

Cordoba, G. (2005) A numerical model for the dynamics of pyroclastic flows at Galeras Volcano Colombia. Journal of Volcanology and Geothermal Research, 139, 59-71. doi:10.1016/j.jvolgeores.2004.06.015

Codina, R., Martõâ, J., Folch, A. & Va, M. (1999) A fractional-step ® nite-element method for the Navier ± Stokes equations applied to magma-chamber withdrawal. Earth, 25, 263-275.

Corpaire, A., Ante, C., Episodios, E., Pichincha, G., & Plan, E. (2009) Simulación numérica de la dispersión y caída de ceniza en Quito debido a la erupción del Volcán Reventador durante el 3 de noviembre de 2002. Atmospheric Research.

Corradini, S., Merucci, L. & Folch, A. (2011) Volcanic Ash Cloud Properties: Comparison Between MODIS Satellite Retrie-vals and FALL3D Transport Model. October, 8(2), 248-252.

Costa, A., Macedonio, G. & Folch, A. (2006) A three-dimensio-nal Eulerian model for transport and deposition of volcanic ashes. Earth and Planetary Science Letters, 241(3-4), 634-647. doi:10.1016/j.epsl.2005.11.019

Costantini, L., Pioli, L., Bonadonna, C., Clavero, J. & Lon-gchamp, C. (2011) A Late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit. Journal of Volcanology and Geothermal Research, 200(3-4), 143-158. Elsevier B.V. doi:10.1016/j.jvolgeores.2010.12.010

Daniele, P., Lirer, L., Petrosino, P., Spinelli, N. & Peterson, R. (2009) Computers & Geosciences Applications of the PUFF model to forecasts of volcanic clouds dispersal from Etna and Vesuvio. Computers and Geosciences, 35(5), 1035-1049. Elsevier. doi:10.1016/j.cageo.2008.06.002

Dowd, C., Varghese, S., Martin, D., Flanagan, R., Mckinstry, A., Ceburnis, D., Ovadnevaite, J., et al. (2012) The Eyjafjalla-jökull ash plume e Part 2: Simulating ash cloud dispersion with REMOTE. Atmospheric Environment, 48, 143-151. Else-vier Ltd. doi:10.1016/j.atmosenv.2011.10.037

Durant, A., Villarosa, G., Rose, W., Delmelle, P., Prata, A. & Viramonte, J. (2011) Long-range volcanic ash transport and fallout during the 2008 eruption of Chaitén volcano, Chile. Physics and Chemistry of the Earth, Parts A/B/C. Elsevier Ltd. doi:10.1016/j.pce.2011.09.004

Fall3d, (2012). Centro de Supercomputación de la Universidad de Barcelona, Modelo Fall3D, Recuperado el 6 de febrero de 2012, de http://www.bsc.es/projects/earthscience/fall3d/ Completar la información del autor.

Folch A., Costa, A., Durant, G., Macedonio, G. (2010) A Model for Wet Aggregation of Ash Particles in Volcanic Plumes and Clo-uds: II. Model Application, J. Geophys. Res., in press. 310 - 345.

Folch, A., Cavazzoni, C., Costa, A. & Macedonio, G. (2008) An automatic procedure to forecast tephra fallout. Journal of Vol-canology and Geothermal Research, 177(4), 769-779. Elsevier B.V. doi:10.1016/j.jvolgeores.2008.01.046

Folch, A, Costa, A. & Basart, S. (2012) Validation of the Fall3d ash dispersion model using observations of the 2010 Eyjafjalla-jökull volcanic ash clouds. Atmospheric Environment, 48, 165 -183. Elsevier Ltd. doi:10.1016/j.atmosenv.2011.06.072

Folch, A, Costa, A. & Macedonio, G. (2009) Computers & Geoscien-ces Fall3d: A computational model for transport and deposi-tion of volcanic ash $. Computers & Geosciences, 35, 1334-1342. doi:10.1016/j.cageo.2008.08.008

Folch, A. & Felipe, A. (2005) A coupled model for dispersal of te-phra during sustained explosive eruptions. Journal of Volcano-logy and Geothermal Research,145, 310 - 340.

Folch, A, Jorba, O., & Viramonte, J. (2008) Volcanic ash forecast – application to the May 2008 Chait ́ en eruption. Earth, 927-940.Folch, A., Neri, A., Macedonio, G. & Mart, J. (2000) Pressure evolution during explosive caldera-forming eruptions. Science, 175, 275 -287.

Folch A., R. Sulpizio (2010). Long range volcanic ash hazard and civil aviation. Application to Somma-Vesuvius (Italy), and consequences over the Central Mediterranean Area. Bulletin of Volcanology, 72(9), 1039-1059.

Granados, J. (2010) Determinación de las condiciones de frontera para el modelo de calidad de aire de Bogotá empleando WRF chimere. Bogotá: Universidad Nacional de Colombia.

Gasso, S., Baldasano, M. & Jime, P. (2005) Modeling the ozone weekend effect in very complex terrains: a case study in the Northeastern Iberian Peninsula. Atmospheric Environment, 39(10), 429-444. doi:10.1016/j.at mosenv.2004.09.065

Heinold, B., Tegen, I., Wolke, R., Ansmann, A., Mattis, I., Mini-kin, A., Schumann, U., et al. (2012) Simulations of the 2010 Eyjafjallajökull volcanic ash dispersal over Europe using COSMO–MUSCAT. Atmospheric Environment, 48, 195-204. El-sevier Ltd. doi:10.1016/j.atmosenv.2011.05.021

Igor Gomez, M. (2010) Computers & Geosciences Design and development of a Java-based graphical user interface to monitor / control a meteorological real-time forecasting system. Computers & Geosciences, 36, 1345-1354. doi:10.1016/j.cageo.2010.05.005

Instituto Colombiano de Geología y Minería. (1997) Mapa de amenaza volcánico del Galeras (3 ed.). Colombia: Instituto Colombiano de Geología y Minería. pp. 31-36.

Langmann, B., Folch, A., Hensch, M. & Matthias, V. (2012) Volcanic ash over Europe during the eruption of Eyjafjalla-jökull on Iceland, April–May 2010. Atmospheric Environment, 48, 1-8. Elsevier Ltd. doi:10.1016/j.atmosenv.2011.03.054

Macedonio, G., Costa, A. & Folch, A. (2008) Ash fallout scena-rios at Vesuvius: Numerical simulations and implications for hazard assessment. Journal of Volcanology and Geothermal Research, 178(3), 366-377. Elsevier B.V. doi:10.1016/j.jvolgeo-res.2008.08.014

Montero, G. & Sanı, N. (2007) A finite difference model for air pollution simulation. Advances in Engineering Software, 38, 358-365. doi:10.1016/j.advengsoft.2006.09.013

Narváez, R. & Pérez, C. (2006) Estrategia para el desarrollo de un modelo de predicción de la calidad del aire de Quito y resul-tados preliminares de la fase de diagnóstico. Acta Nova, 3(2), 238-256. Quito, Ecuador.

Neri, A., Aspinall, W., Cioni, R., Bertagnini, A., Baxter, P., Zuc-caro, G., Andronico, D., et al. (2008) Developing an Event Tree for probabilistic hazard and risk assessment at Vesu-vius. Journal of Volcanology and Geothermal Research, 178(3), 397-415. Elsevier B.V. doi:10.1016/j.jvolgeores.2008.05.014

Sparks, R., Woods, A., Bursik, M., Carey S., Sigurdsson, H., Glaze, L. & Gilbert, J. (1997) Volcanic Plumes. England: John Wiley & Sons Ltd. ISBN; 0-471-93901-3, QE527.7.V65, 551.2 ́3-DC21, 96-39034CIP,

Saucedo, R., Macías, J., Sheridan, M., Bursik, M. & Komorows-ki, J. (2005) Modeling of pyroclastic flows of Colima Vol-cano, Mexico: implications for hazard assessment. Journal of Volcanology and Geothermal Research, 139(1-2), 103-115. doi:10.1016/j.jvolgeores.2004.06.019

Scaini, C., Folch, A. & Navarro, M. (2012) Tephra hazard as-sessment at Concepción Volcano, Nicaragua. Journal of Vol-canology and Geothermal Research, 219-220, 41-51. Elsevier B.V. doi:10.1016/j.jvolgeores.2012.01.007

Scollo, S., Folch, A., Coltelli, M. & Realmuto, V. (2004) 3D volca-nic aerosol dispersal: a comparison between MISR data and numerical simulations. Jet Propulsion, 3(1), 41.

Scollo, S., Folch, A. & Costa, A. (2008) A parametric and compa-rative study of different tephra fallout models. Volcanology and Geothermal Research, 176, 199-211. doi:10.1016/j.jvolgeo-res.2008.04.002

Scollo, S., Prestifilippo, M., Coltelli, M., Peterson, R. & Spata, G. (2011) A statistical approach to evaluate the tephra deposit and ash concentration from PUFF model forecasts. Journal of Volcanology and Geothermal Research, 200(3-4), 129-142. El-sevier B.V. doi:10.1016/j.jvolgeores.2010.12.004

Steensen, T., Stuefer, M., Webley, P., Grell, G. & Freitas, S. (2012) Qualitative comparison of Mount Redoubt 2009 vol-canic clouds using the PUFF and WRF-Chem dispersion models and satellite remote sensing data. Journal of Volca-nology and Geothermal Research. Elsevier B.V. doi:10.1016/j.jvolgeores.2012.02.018

Suzuki, T. (1983) A theoretical model for dispersion of tephra. En: D. Shimozuru y I. Yokoyama (Eds.), Arc Volcanism: Physycs and Tectonics (89-100). Terra ScientificPublshn-gCompany, Tokyo,

Witham, C., Webster, H., Hort, M., Jones, A. & Thomson, D. (2012) Modelling concentrations of volcanic ash encountered by aircraft in past eruptions. Atmospheric Environment, 48, 219-229. Elsevier Ltd. doi:10.1016/j.atmosenv.2011.06.073

Weather Research and Forecasting, Modelo de Simulación Numérico atmosférico. (s.f.) Recuperado el 6 de febrero de 2012, de http://www.wrfmodel.org/index.php

Zilitinkevich, S. (1998) A similarity-theory model for wind pro-file and resistance law in stably stratified planetary bounda-ry layers. Journal of Wind Engineering and Industrial Aerody-namics, 120, 1485-218. doi:10.1016/S0167-6105(98)00018-X

How to Cite

Argoti Álvarez, J. A. (2014). METODOLOGÍA PARA SIMULAR LA DISPERSIÓN DE CENIZAS VOLCÁNICAS EN LA ATMÓSFERA. Revista UNIMAR, 30(2), 22–41. Retrieved from https://revistas.umariana.edu.co/index.php/unimar/article/view/237

Downloads

Download data is not yet available.

Languages:

spanish

Published

2014-04-13

Issue

Section

Artículos resultado de investigación

Altmetric

QR Code
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views