Production and catalytic evaluation of a recombinant Taq DNA polymerase as an alternative for biotechnological applications

Authors

Keywords:

Taq Polymerase, Recombinant proteins, Gene Expression, Biotechnology, Polymerase Chain Reaction, Scientific and Technical Autonomy

Abstract

Recombinant Taq DNA polymerase is a key tool in molecular biology. The COVID-19 pandemic highlighted the vulnerability associated with dependence on imported critical reagents. This study aimed to develop an optimized protocol for the heterologous expression, purification, and functional validation of recombinant Taq polymerase to support local production capacity. Escherichia coli BL21(DE3) cells were transformed with the pOpenTaq plasmid, and expression was induced under varying IPTG concentrations and incubation temperatures to determine optimal conditions. The purification protocol combined heat and ammonium sulfate precipitation followed by size-exclusion chromatography. Enzymatic activity was assessed via endpoint PCR using various DNA templates and compared to a commercial Taq polymerase. Maximum expression was achieved at 37 °C with 1 mM IPTG after 4 hours of induction. The purified enzyme reached >90% purity and exhibited comparable amplification efficiency to the commercial control, including with complex clinical samples. The developed method is efficient, reproducible, and amenable to scale-up, representing a viable approach for the local production of thermostable polymerases and other strategic molecular reagents.  

Author Biographies

Luna Torres-Hichster, Universidad El Bosque

Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque

Carlos Nieto-Clavijo, Universidad El Bosque

Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque

Liliana Morales, Universidad El Bosque

Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque

Jacqueline Chaparro-Olaya, Universidad El Bosque

Laboratorio de Parasitología Molecular, Vicerrectoría de Investigaciones, Universidad El Bosque

References

Ahrberg, C. D., Manz, A., & Neužil, P. (2021). Palm-sized device for point-of-care nucleic acid-based diagnosis of infectious diseases. Analytical Chemistry, 93(9), 4240–4250. https://doi.org/10.1021/acs.analchem.0c04838

Arakawa, T., & Philo, J. S. (2007). The importance of counterion concentration in protein solutions. Biophysical Chemistry, 127(1–2), 1–7. https://doi.org/10.1016/j.bpc.2006.07.003

Bartlett, J. M. S., & Stirling, D. (2003). A short history of the polymerase chain reaction. In J. M. S. Bartlett & D. Stirling (Eds.), PCR protocols (Vol. 226, pp. 3–6). Humana Press. https://doi.org/10.1385/1-59259-384-4:3

Berlec, A., & Strukelj, B. (2013). Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. Journal of Industrial Microbiology & Biotechnology, 40(3–4), 257–274. https://doi.org/10.1007/s10295-013-1235-0

Chen, Z., Zhao, Y., He, H., & Ding, Y. (2020). Capacity building for the production of diagnostic reagents in developing countries: Lessons from China’s response to COVID-19. Health Research Policy and Systems, 18(1), 107. https://doi.org/10.1186/s12961-020-00635-w

Gaberc-Porekar, V., & Menart, V. (2001). Perspectives of immobilized-metal affinity chromatography. Journal of Biochemical and Biophysical Methods, 49(1–3), 335–360. https://doi.org/10.1016/S0165-022X(01)00200-7

Hoorfar, J., Cook, N., Malorny, B., Wagner, M., De Medici, D., Abdulmawjood, A., & Fach, P. (2004). Making internal amplification control mandatory for diagnostic PCR. Journal of Clinical Microbiology, 42(6), 1863–1868. https://doi.org/10.1128/JCM.42.6.1863-1868.2004

Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. (Eds.). (1990). PCR protocols: A guide to methods and applications. Academic Press.

Keitelman, I. A., Ramírez, R., Bianchi, M. B., & Carbone, C. (2020). COVID-19: desafíos y oportunidades para la producción pública de tecnología sanitaria en América Latina. Revista Panamericana de Salud Pública, 44, e140. https://doi.org/10.26633/RPSP.2020.140

Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., ... & Zoric, N. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27(2–3), 95–125. https://doi.org/10.1016/j.mam.2005.12.007

Lawyer, F. C., Stoffel, S., Saiki, R. K., Myambo, K., Drummond, R., & Gelfand, D. H. (1989). High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods and Applications, 2(4), 275–287. https://doi.org/10.1101/gr.2.4.275

Lozano Terol, G., Gallego-Jara, J., Sola Martínez, R. A., Martínez Vivancos, A., Cánovas Díaz, M., & de Diego Puente, T. (2021). Impact of the expression system on recombinant protein production in Escherichia coli BL21. Frontiers in Microbiology, 12, 682001. https://doi.org/10.3389/fmicb.2021.682001

Mullis, K., & Faloona, F. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335–350. https://doi.org/10.1016/0076-6879(87)55023-6

Ramasamy, M., Lee, J., & Kim, M. (2014). Enabling technologies towards development of cost-effective diagnostic devices for developing countries. Sensors and Actuators B: Chemical, 190, 673–682. https://doi.org/10.1016/j.snb.2013.08.066

Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172. https://doi.org/10.3389/fmicb.2014.00172

Schein, C. H. (1989). Production of soluble recombinant proteins in bacteria. Bio/Technology, 7(11), 1141–1149. https://doi.org/10.1038/nbt1189-1141

Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors – occurrence, properties and removal. Journal of Applied Microbiology, 113(5), 1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x

Singh, A., Garg, N., & Pandey, A. (2021). Production and purification of recombinant thermostable DNA polymerases for molecular biology applications: Current perspectives. Biotechnology Advances, 48, 107719. https://doi.org/10.1016/j.biotechadv.2021.107719

Studier, F. W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expression and Purification, 41(1), 207–234. https://doi.org/10.1016/j.pep.2005.01.016

UniProt Consortium. (2024). UniProt: the Universal Protein knowledgebase in 2024. Nucleic Acids Research, 52(D1), D1–D7. https://doi.org/10.1093/nar/gkad1010

van der Vlugt, R., Reusken, C., van der Eijk, A., Meijer, A., van den Kerkhof, H., & Niesters, H. (2021). Supply chain challenges during the COVID-19 pandemic: The Dutch experience. Eurosurveillance, 26(7), 2100031. https://doi.org/10.2807/1560-7917.ES.2021.26.7.2100031

Vieille, C., & Zeikus, J. G. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65(1), 1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001

Wang, W., Jiang, Y., Gao, L., Jiang, Y., Qiu, L., Zhao, M., & Wu, R. (2019). A simplified and efficient method for purification of Taq DNA polymerase. Preparative Biochemistry & Biotechnology, 49(4), 392–398. https://doi.org/10.1080/10826068.2018.1533853

Wingfield, P. T. (2017). Protein precipitation using ammonium sulfate. Current Protocols in Protein Science, 89, 4.1.1–4.1.9. https://doi.org/10.1002/cpps.30

How to Cite

Torres-Hichster, L., Nieto-Clavijo, C., Morales, L., & Chaparro-Olaya, J. (2026). Production and catalytic evaluation of a recombinant Taq DNA polymerase as an alternative for biotechnological applications. Revista Criterios, 33(1). Retrieved from https://revistas.umariana.edu.co/index.php/Criterios/article/view/4899

Downloads

Download data is not yet available.

Published

2026-01-14

Issue

Section

Artículos resultado de investigación

Altmetric

QR Code
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Some similar items: