Prototype of a mechatronic device for passive mobility therapeutic support controlled with a microcontroller system and touch screen for people with musculoskeletal wrist and forearm injuries in rehabilitation centers

Authors

  • Fabio Andrés Casanova Álvarez
  • Jhonatan Daniel Ruiz Quenán

DOI:

https://doi.org/10.31948/Biumar6-1-art4

Keywords:

forearm, wrist, ligamentss, muscles, bones, device, rehabilitation, mobilization

Abstract

In the daily environment, the use of the upper extremities of the human body is a fundamental part of it, for carrying out activities. Tasks such as typing or holding an electronic device have caused the wrist and forearm to be more compromised in conditions that cause wear on their ligaments, muscles, and bones. The implementation of a controlled device in rehabilitation centers was made based on the types of injuries that are treated there. As it is a daily job, either wrist or forearm, a mechatronic prototype is required, capable of performing three different types of mobilizations, which help in the recovery of these joints, which will be the main axis to generate support for physiotherapeutic professionals in their daily work.

Author Biographies

Fabio Andrés Casanova Álvarez

Estudiante Ingeniería Mecatrónica, Universidad Mariana.

Jhonatan Daniel Ruiz Quenán

Estudiante Ingeniería Mecatrónica, Universidad Mariana.

References

Aceros Global. (2021). Vigas. https://aceros.com.pe/tienda/perfiles-de-acero/vigas-de-acero-vigas-h/

Anónimo. (s.f.). Muñeca y Mano. https://www.amicivirtual.com.ar/Anatomia/11MucaMano.pdf

CCamusV. (s.f.). Evaluación. https://store.ccamusv.cl/insumos-kinesiologia/evaluacion

Gnee Pipe. (2008). Tubería de acero 410L inoxidable. http://m.baogangpipe.com/stainless-steel-pipe/410lsteel-pipe-stainless.html

Kapandji, A. I. (2007). Fisiología Articular (6.a ed.). Médica Panamericana.

Martinez, J. A., Ng, P., Lu, S., Campagna, M. S., & Celik, O. (2013). Design of wrist gimbal. A forearm and wrist exoskeleton for stroke rehabilitation. International Conference on Rehabilitation Robotics, IEEE. 10.1109/ICORR.2013.6650459

Nordin, M. y Frankel, V. H. (2013). Bases biomecánicas del Sistema Musculoesquelético (4.a ed.). Wolters Kluwer Health.

Obert, L., Loisel, F., Jardin, E., Gasse, N., & Lepage, D. (2016). High-energy injuries of the wrist. Orthopedics and Traumatology Surgery and Research, OTSR, 102(1), S81-93. https://doi.org/10.1016/j.otsr.2015.05.009

Phadnis, J. & Watts, A. C. (2016). Longitudinal instability of the forearm. Leitthema, 45(10), 861-869. https://doi.org/10.1007/s00132-016-3329-7

Torres, A. (2022). Pronación y supinación. https://www.kenhub.com/es/library/anatomia-es/pronacion-ysupinacion

Dnatives. (2022). Guía completa: plásticos en la impresión 3D. https://www.3dnatives.com/es/plasticosimpresion-3d-22072015/#!

Woodmart. (2018). Display Wall. https://shandong.com.pe/producto/display-wall/

How to Cite

Casanova Álvarez, F. A., & Ruiz Quenán, J. D. (2022). Prototype of a mechatronic device for passive mobility therapeutic support controlled with a microcontroller system and touch screen for people with musculoskeletal wrist and forearm injuries in rehabilitation centers. Revista Biumar, 6(1), 27–36. https://doi.org/10.31948/Biumar6-1-art4

Downloads

Download data is not yet available.

Published

2022-12-14

Issue

Section

Artículos